Как подключить светодиод к 12 вольтам

Схемы с емкостными конденсаторами

На 12 вольт светодиод через емкостный конденсатор разрешается подключать только в последовательном порядке. Если рассматривать схему с лентой ламп, то тиристор используется с одним переходником. В данном случае фильтры применяются без обмотки. Для того чтобы избежать случаев короткого замыкания, необходимы стабилитроны. Они являются довольно компактными. Устанавливать их следует за фильтрами. Конденсатор в данном случае фиксируется на модуляторе. Для регулировки светового потока необходим контроллер. Если подбирать устройство однополюсного типа, то параметр номинального сопротивления будет составлять около 50 Ом

Также важно отметить, что цветовая температура устройства зависит от проводимости контроллера

↑ Хочу стрелочный!

И прошло много лет. И вот я неспешно (иногда кажется, что слишком неспешно) собираю усилитель на лампах. И всем давно уже понятно, что индикатор уровня на усилителе — плюшка. Тем более сейчас, когда каналы в источнике практически никогда не отличаются по уровню, и понятие «регулятор стереобаланса» кануло в лету. И тем не менее — хочу стрелочный «показометр» на переднюю панель, и все тут! Аскетичного дизайна, с желтой подсветкой

Так как индикатор-показометр не является важной частью усилителя (на скорость и стабильность не влияет), то его постройка-настройка велась уже на звучащем агрегате. Сама головка индикатора была выбрана и приобретена давно:


Удалось найти сдвоенную, с желтоватой панелью. Подсветка от производителя была сделана коаксиальной лампой накаливания на 12 Вольт. Которая была успешно заменена на 4 желтых светодиода. Но это случилось позже. А пока что пришлось задуматься, как же микроамперметры подключать к выходу усилителя? А подключать надо через специальный логарифмический усилитель, т. к. динамический диапазон звука намного больше, чем диапазон работы микроамперметра. Теоретически это все знают, кто сталкивался с самодельными стрелочными индикаторами.

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Каким образом подключаются диоды

Прежде чем приступать к пайке светодиодов (например, типа SMD), необходимо знать, каким образом они подключаются к схеме или последовательно друг к другу (если речь идет о светодиодных лентах).

Обратите внимание! Светодиоды, чаще всего, подключатся в сеть с напряжением в 12 или 9 В. Но обычно приборы рассчитаны на уровень потребляемого тока в 0,02 А (20 мА)

Идеальным вариантом для светодиодов является подключение их через стабилизатор тока. При этом следует помнить, что такие стабилизаторы обойдутся несколько дороже, чем единичные светодиоды (например, типа SMD). Это нужно учитывать, при самостоятельной сборке радиоэлектрических приборов.

Для того чтобы запитать светодиоды желтого и красного свечения, зачастую необходимо напряжение в 2,0 В. В то же время для питания светодиодов синего, зеленого и белого цветов — 3,0 В. Разобраться в этом вопросе поможет следующий пример:

  • в наличии имеется батарея на 12 В, а также светодиоды на 0,02 А и 2,0 В;
  • самым простым решением здесь будет подача напряжения в 2,0 В на каждый диод;
  • при этом лишние 10 В необходимо будет погасить при помощи резистора. Его еще часто называют сопротивлением;
  • используя закон Ома, вычисляем величину сопротивления (R = U/I). В результате получаем R = 10,0/0,02 = 500 Ом;
  • также, чтобы уберечь сопротивление от лишнего тепла, необходимо провести расчеты его мощности. В результате получится Р = 10,0 * 0,02 А = 0,2 Вт.

Для большей надежности необходимо брать сопротивление немного большей емкости

Обратите внимание! При увеличении мощности сопротивления естественным образом увеличатся его габаритные размеры. Зная вышеприведенные аспекты, вы сможете правильно подключить светодиоды к батарее, используя для этого резистор

Главное здесь точно соблюдать полярность используемых деталей.

Подпишись на RSS!

Подпишись на RSS и получай обновления блога!

Получать обновления по электронной почте:

    • Цифровой вольтметр на базе модулей ADS1115 и TM1637
      16 февраля 2020
    • Как проверить частотомер в домашних условиях
      16 декабря 2019
    • Амперметр на оптронах
      9 декабря 2019
    • Генератор кварцевый термостатированный
      28 октября 2019
    • Тактовый генератор для PIC контроллеров
      8 октября 2019
    • Зарядное устройство для автомобильных аккумуляторов — 237 264 просмотров
    • Стабилизатор тока на LM317 — 173 394 просмотров
    • Стабилизатор напряжения на КР142ЕН12А — 124 783 просмотров
    • Реверсирование электродвигателей — 101 568 просмотров
    • Зарядное для аккумуляторов шуруповерта — 98 274 просмотров
    • Карта сайта — 95 949 просмотров
    • Зарядное для шуруповерта — 88 374 просмотров
    • Самодельный сварочный аппарат — 87 711 просмотров
    • Схема транзистора КТ827 — 82 342 просмотров
    • Регулируемый стабилизатор тока — 81 280 просмотров
    • DC-DC (4)
    • Автомат откачки воды из дренажного колодца (5)
    • Автоматика (34)
    • Автомобиль (3)
    • Антенны (2)
    • Ассемблер для PIC16 (3)
    • Блоки питания (30)
    • Бурение скважин (6)
    • Быт (11)
    • Генераторы (1)
    • Генераторы сигналов (8)
    • Датчики (4)
    • Двигатели (7)
    • Для сада-огорода (11)
    • Зарядные (15)
    • Защита радиоаппаратуры (8)
    • Зимний водопровод для бани (2)
    • Измерения (34)
    • Импульсные блоки питания (2)
    • Индикаторы (5)
    • Индикация (10)
    • Как говаривал мой дед … (1)
    • Коммутаторы (5)
    • Логические схемы (1)
    • Обратная связь (1)
    • Освещение (3)
    • Программирование для начинающих (15)
    • Программы (1)
    • Работы посетителей (7)
    • Радиопередатчики (2)
    • Радиостанции (1)
    • Регуляторы (5)
    • Ремонт (1)
    • Самоделки (12)
    • Самодельная мобильная пилорама (3)
    • Самодельный водопровод (7)
    • Самостоятельные расчеты (37)
    • Сварка (1)
    • Сигнализаторы (5)
    • Справочник (13)
    • Стабилизаторы (15)
    • Строительство (2)
    • Таймеры (4)
    • Термометры, термостаты (27)
    • Технологии (21)
    • УНЧ (2)
    • Формирователи сигналов (1)
    • Электричество (4)
    • Это пригодится (12)
  • Архивы
    Выберите месяц Февраль 2020  (1) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Схема проекта

Схема подключения 4-х разрядного семисегментного индикатора к микроконтроллеру PIC16F877A представлена на следующем рисунке.

У модуля 4-х разрядного семисегментного индикатора мы имеем 12 выходных контактов, 8 из которых используются для отображения символов, а остальные 4 – для выбора разряда индикатора. 8 контактов для отображения символов подключены к контактам порта PORTD микроконтроллера PIC, а 4 управляющих контакта – к контактам порта PORTC микроконтроллера.

Примечание: контакт Ground (общий провод/земля) модуля индикатора должен быть подключен к контакту ground микроконтроллера.

Особенности подключения RGB и COB светодиодов

Светодиоды с аббревиатурой RGB – это полихромные или многоцветные излучатели света разных цветов. Большинство из них собираются из трех светодиодных кристаллов, каждый из которых излучает свой цвет. Такая сборка называется цветовая триада.

Подключение RGB-светодиода производят так же, как и обычных светодиодов. В каждом корпусе такого многоцветного источника света располагаются по одному кристаллу: Red – красный, Green – зеленый и Blue – синий. Каждому светодиоду соответствует свое рабочее напряжение:

  • синему – от 2,5 до 3,7 В;
  • зеленому – от 2,2 до 3,5 В;
  • красному – от 1,6 до 2,03 В.

Кристаллы могут быть соединены между собой по-разному:

  • с общим катодом, т. е. три катода соединены между собой и с общим выводом на корпусе, а аноды – каждый имеет свой вывод;
  • с общим анодом – соответственно для всех анодов вывод общий, а катоды – индивидуальные;
  • независимая цоколевка – каждый анод и катод имеет собственный вывод.

Поэтому номиналы токоограничивающих резисторов будут разными.

Соединение кристаллов RGB-светодиода по схеме с общим катодом.
Соединение «с общим анодом».

В обоих случаях корпус диода имеет по 4 проволочных вывода, контактных площадок в SMD-светодиодах или штырька в корпусе «пиранья».

В случае с независимыми светодиодами выводов будет 6.

В корпусе SMD 5050 кристаллы-светодиоды располагают так:

В корпусе многоцветного 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов помните – каждому цвету соответствует свое напряжение диода.

Подключение светодиодов типа COB

Аббревиатура COB – это первые буквы английского словосочетания chip-on-board. По-русски это будет – элемент или кристалл на плате.

Кристаллы клеят или паяют на теплопроводящую подложку из сапфира или кремния. После проверки правильности электрических соединений, кристаллы заливают желтым люминофором.

Светодиоды типа COB – это матричные конструкции, состоящие из десятков или сотен кристаллов, которые соединены группами с комбинированным включением полупроводниковых p-n-переходов. Группы – это последовательные цепочки светодиодов, количество которых соответствует напряжению питания светодиодной матрицы. Например, при 9 В это 3 кристалла, 12 В – 4.

Цепочки с последовательным включением соединяют параллельно. Таким образом набирают требуемую мощность матрицы. Кристаллы синего свечения заливают желтым люминофором. Он переизлучает синий свет в желтый, получая белый.

Качество света, т. е. цветопередачу регулируют в процессе производства составом люминофора. Одно- и двухкомпонентный люминофор дает невысокое качество, т. к. имеет в спектре 2-3 линии излучения. Трех- и пятикомпонентный – вполне приемлемую цветопередачу. Она может быть до 85-90 Ra и даже выше.

Подключение этого вида излучателей света не вызывает проблем. Их включают как обычный мощный светодиод, питаемый источником тока стандартного номинала. Например, 150, 300, 700 мА. Производитель СОВ-матриц рекомендует выбирать источники тока с запасом. Он поможет при запуске светильника с COB-матрицей в эксплуатацию.

Предисловие

На изготовление индикаторов выходной мощности для своего УНЧ я выбрал схему на транзисторах. Вы спросите: а почему не на микросхемах? — постараюсь объяснить плюсы и минусы.

Из плюсов можно отметить то, что собирая на транзисторах можно максимально гибко отладить схему индикатора под нужные вам параметры, выставить нужный диапазон индикации и плавность реакции как вам нравится, количество ячеек индикации — да хоть сотня, лишь бы терпения хватило на их регулировку.

Также ожно использовать любое питающее напряжение(в пределах разумного), спалить такую схему очень сложно, в случае неисправности одной ячейки можно быстро все исправить. Из минусов хочу отметить то что на наладку данной схемы по своим вкусам придется потратить немало времени. Делать на микросхеме или транзисторах — решать вам, исходя из ваших возможностей и потребностей. Индикаторы выходной мощности собираем на самых распространенных и дешевых транзисторах КТ315. Думаю, каждый радиолюбитель хоть раз в своей жизни сталкивался с этими миниатюрными цветными радиокомпонентами, у многих они валяются пачками по несколько сотен и без дела.

Рис. 1. Транзисторы КТ315, КТ361

Шкала моего УНЧ будет логарифмическая, исходя из того что максимальная выходная мощность будет порядка 100Ватт. Если сделать линейную то при 5 Ваттах ничего не будет даже светиться или же придется делать шкалу на 100 ячеек. Для мощных УНЧ нужно чтобы между мощностью на выходе усилителя и количеством светящихся ячеек была логарифмическая зависимость.

Что необходимо учесть автолюбителю перед заменой?

Чтобы своими руками правильно, используя схему подключения, подсоединить светодиодные лампочки, в первую очередь нужно разобраться с основной информацией. Для начала нужно понимать, что 12-вольтовый моргающий автомобильный диод — это не лампа.

Подключение светодиодов к бортовой сети на 12 вольт должно производиться с учетом некоторых моментов:

  1. В первую очередь, чтобы обезопасить подключение, нужно учесть напряжение, которое присутствует в автомобильной электросети. Как правило, этот параметр составляет около 12-13 вольт при отключенном двигателе и около 13-14.5 вольт при заведенном.
  2. В среднем один яркий и мощный диод нуждается в 3.5 вольтах питания, однако данный показатель также может варьироваться в зависимости от цвета. Например, желтый либо красный мигающий светодиод для авто будет потреблять около 2.3 вольт, а белые либо синие элементы — по 3.5 вольт в среднем.
  3. В отличие от стандартных лампочек накаливания, светодиодные сборки позволяют более качественно осветить поверхность вокруг, что особенно хорошо для их установки в приборные панели.
  4. Перед покупкой следует проверить тип линзы, установленной в лампочке. Бывают узконаправленные устройства, оснащенные небольшими по размерам линзами.
  5. Вне зависимости от типа, диодные элементы на двенадцать вольт имеют как положительный вывод, так и отрицательный. Положительный контакт в данном случае, это анод, а отрицательный — катод.

Светодиоды с разными цоколями

Чтобы правильно подобрать диодные элементы на 12в, нужно ориентироваться в их разновидностях, а делятся они между собой по мощности:

  1. Маломощные устройства не имеют системы охлаждения, поэтому их ресурс эксплуатации обычно низкий. В автомобилях таких устройства есть смысл использовать только в качестве индикаторов, к примеру, включения дневных ходовых огней или при установке контроллера разряда АКБ.
  2. Мощные диоды 12в имеют более высокий ресурс эксплуатации, при правильном использовании они могут проработать до 10 лет. Нужно учитывать, что такие диодные элементы не подвергаются большим нагрузкам.
  3. Модули. Такие устройства представляют собой стальную пластину, на которую вмонтирован целый ряд диодных элементов. Цена модуля зависит от его надежности и качества производства — чем лучше качество, тем выше цена. Модули не нужно путать с китайскими лентами, поскольку их эксплуатация возможна, разве что, для подсветки контрольного щитка или бардачка.

Схема подключения диода в авто

https://www.youtube.com/watch?v=4jAnsqTsfNU

Питание

Индикаторы, потребляющие ток менее 150…200 мА вполне можно питать от выхода Remote головного устройства. Напряжение там на 0,5…1 В меньше, чем в бортовой сети, но это на работе устройства никак не скажется.

Если же потребляемый индикатором ток больше, придется использовать маломощное реле (РЭС-55, РЭС-10) или собрать электронное реле по схеме рис.8.

Рис. 8. Схема питания индикатора выходной мощности усилителя.

И уж коли речь зашла о питании, неплохо бы снабдить аудиосистему собственным вольтметром. Даже если он есть в штатном оборудовании автомобиля, при выключенном зажигании он не работает. К тому же напряжение он измеряет в какой-то неведомой точке.

В отечественных автомобилях на его показаниях сказывается решительно все — от включенных «поворотников» до мигающей лампочки ручного тормоза. Для наших же целей лучше измерять напряжение на клеммах аккумулятора или на буферном конденсаторе — где будет удобнее.

Простой стрелочный вольтметр не подходит — у него линейная шкала, а все, что ниже 10-11 вольт нам неинтересно. Порядочное головное устройство блокируется или «зависает», если напряжение в бортовой сети опускается до этих пределов. Поэтому шкалу надо растянуть, чтобы она напоминала шкалу обычного автомобильного вольтметра на щитке приборов.

Кстати, «обычный автомобильный» для этой цели использовать можно, но не стоит. Он потребляет от бортовой сети достаточно приличный ток (несколько десятков миллиампер), почему и включен через замок зажигания. А нам нужен вольтметр, работающий постоянно или хотя бы независимо от зажигания. Схема такого вольтметра приведена на рис. 9.

Рис. 9. Схема вольтметра.

Стабилитрон с напряжением стабилизации около 10,5…11 В обеспечивает «растяжку» шкалы, резистором вольтметр калибруется на максимальное отклонение при максимальном напряжении в бортовой сети (14,5-16 В). Шкалу придется строить по точкам, используя регулируемый источник питания и эталонный вольтметр.

Если точные значения не требуются, можно ограничится только определением границ «зеленого» и «красного» сектора. Потребляемый ток определяется током отклонения индикатора (меньше миллиампера), поэтому вольтметр можно и нужно сделать неотключаемым — часы потребляют намного больше. Для светодиодного индикатора мощности больше подойдет следующая схема (рис.10).

Рис. 10. Схема питания для светодиодного индикатора мощности.

Принцип ее действия тот же, что и у предыдущей. Пока напряжение в бортовой сети в норме, транзистор открыт и шунтирует светодиод. Как только напряжение снизится до напряжения стабилизации стабилитрона, транзистор закроется и светодиод вспыхнет, сигнализируя о проблеме. Для лучшей заметности можно использовать «мигающий» светодиод со встроенной схемой управления.

Порог срабатывания определяется стабилитроном, поэтому для точной настройки его придется подбирать. В отличие от предыдущей эта схема потребляет больший ток, определяемый резистором R2. Хотя он и невелик (порядка 10 мА), лучше питать ее от выхода Remote, учитывая потери напряжения на нем.

Если пойти этим путем дальше, можно поставить еще и термометр, измеряющий температуру усилителя (или водителя). Так что пока остановимся на этом.

Особенности подключения

Первое, что надо знать, прежде чем подключить диодную ленту, это то, что напряжение бортовой сети авто достигает 14,5 вольт, в то время как максимально допустимое рабочее напряжение светодиода порядка 3 вольт (у синих и белых немного больше, чем у красных и зеленых оттенков).

Из этого следует, что напрямую подключение светодиодную лента к аккумулятору не представляется возможным.

Второе – это полярность светодиода. Его следует подключить таким образом, чтобы плюс источника постоянного тока был соединен с анодом светодиода, а минус с катодом.

При создании подсветки можно применять готовые кластеры или светодиодные ленты. Они созданы по схеме, которая включает необходимые резисторы и состоит из несколько светодиодов. Такой кластер или лента рассчитаны на определенное напряжение. Выбирая модель, проверяем, чтобы электрические параметры были допустимы для нашего автомобиля, и начинаем производить монтаж.

Заметим, что диодные ленты имеют определенное преимущество – их можно резать. Разрез производится только в обозначенном производителем месте, иначе она не будет работать.

Лентами освещают автомобиль изнутри и снаружи, осуществляют подключение светодиодов к ручкам, подсвечивают сиденья в салоне, подсвечивают колеса и номерные знаки. Делают подсветку днища, благодаря чему в темноте автомобиль приобретает необычный вид.

Используя светодиоды, можно сделать светящийся узор на автомобиле. Такой вид тюнинга предпочитает не каждый, а вот заменить обычную фару на светодиодную желают многие водители. Поэтому сделать светодиодную лампу для авто в любом месте не проблема.

Несколько слов об окружающих нас емкостях

Как работает емкостный индикатор напряжения? Чтобы понять это, давайте вернемся на мгновение к электрической теории цепей и вспомним, как функционирует конденсатор. Он имеет два проводника, или пластины, разделенные диэлектриком. Многие думают, что конденсаторы – это отдельные элементы электронных схем, но в действительности мир заполнен конденсаторами, присутствия которых мы обычно просто не замечаем. Вот пример. Предположим, что вы стоите на ковре, покрывающем бетонный пол прямо под горящим светильником с напряжением 220 В. Хотя вы этого и не ощущаете, но ваше тело проводит очень небольшой (порядка микроампера) переменный ток, так как оно является частью цепи, состоящей из двух последовательно включенных конденсаторов. Двумя пластинами первого конденсатора являются нить накала в электролампочке и ваше тело. Диэлектриком – воздух (и, возможно, ваша шляпа) между ними. Пластинами второго конденсатора являются ваше тело и бетонный пол (он достаточно хороший проводник).

Диэлектрик второго конденсатора – это ковер плюс ваши ботинки и носки. Поскольку бетонный пол хорошо заземлен, как и нулевой провод питающей сети, к цепи из двух этих последовательных конденсаторов приложено напряжение в 220 В.

Тахометр на мотоцикл

Владельцы мотоциклов всегда стремятся к тому, чтобы сделать свою мототехнику лучше и интересней. Для этого применяется большое количество приспособлений. Одним из них является тахометр. Это приспособление устанавливается и на отечественные и на иностранные мотоциклы.

Тахометр обладает привлекательным внешним видом и делает приборную панель более функциональной. Как известно, на мотоциклах обычно на приборной панели не имеется такого большого многообразия приборов для наблюдения за основными показателями техники. Именно поэтому многие мотоциклисты разрабатывают новые методы для увеличения функциональности своего байка.

Два основных принципа о том как можно подключить светодиод к 12 вольтам или понизить напряжение на нагрузке

 Прежде, чем перейти к конкретным схемам и их описаниям, хотелось бы сказать о двух принципиально разных, но возможных вариантах подключения светодиода к 12 вольтовой сети.

  Первый, это когда напряжение падает за счет того, что последовательно светодиоду подключается дополнительное сопротивление потребителя, в качестве которого выступает микросхема-стабилизатор напряжения. В этом случае определенная часть напряжения теряется в микросхеме, превращаясь в тепло. А значит вторая, оставшаяся, достается непосредственно нашему потребителю — светодиоду. Из-за этого он и не сгорает, так как не все суммарное напряжение проходит через него, а только часть. Плюсом применения микросхемы является тот факт, что она способна в автоматическом режиме поддерживать заданное напряжение. Однако есть и минусы. У вас не получиться снизить напряжение ниже уровня, на которое она рассчитана. Второе. Так как микросхема обладает определенным КПД, то падение относительно входа и выхода будет отличаться на 1-1,5 вольта в меньшую сторону. Также для применения микросхемы вам необходимо будет применить хороший рассеивающий радиатор, установленный на ней. Ведь по сути тепло выделяемое от микросхемы, это и есть невостребованные нами потери. То есть то, что мы отсекли от большего потенциала, чтобы получить меньший.

 Второй вариант питания светодиода, когда напряжение ограничивается за счет резистора. Это сродни тому, если бы большую водопроводную трубы взяли бы и сузили. При этом поток (расход и давление) снизились бы в разы. В этом случае до светодиода доходит лишь часть напряжения. А значит, он также может работать без опасности быть сожженным. Минусом применения резистора будет то, что он также имеет свой КПД, то есть также тратит невостребованное напряжение в тепло. В этом случае бывает трудно установить резистор на радиатор.  В итоге, он не всегда подойдет для включения в цепь. Также минусом будет являться и то обстоятельство, что резистор не поддерживает автоматического удержания напряжение в заданном пределе. При падении напряжения в общей цепи, он подаст настолько же меньшее напряжение и на светодиод. Соответственно обратная ситуация произойдет при повышении напряжения в общей цепи.

 Конечно, тот и другой вариант не идеальны, так при работе от портативных источников энергии каждый из них будет тратить часть полезной энергии на тепло. А это актуально! Но что сделать, таков уж принцип их работы. В этом случае источник питания будет тратить часть своей энергии не на полезное действие, а на тепло. Здесь панацеей является использование широтно-импульсной модуляции, но это значительно усложняет схему… Поэтому мы все же остановимся на первых двух вариантах, которые и рассмотрим на практике.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Велодром
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: