Механизмы управления автомобиля

Конструкция и виды рулевого привода


Устройство привода рулевой рейки К приводу относятся все элементы, находящиеся между рулевым механизмом и управляемыми колесами. Структура узла зависит от типа используемой подвески и рулевого механизма.

Рулевой привод механизма “шестерня-рейка”

Данный вид привода, входящий в состав рулевой рейки, получил наибольшее распространение. Он состоит из двух горизонтальных тяг, рулевых наконечников и поворотных рычагов стоек передней подвески. Рейка с тягами соединяется при помощи шаровых шарниров, а наконечники фиксируются стяжными болтами либо при помощи резьбового соединения.

Также следует заметить, что с помощью рулевых наконечников регулируется схождение колес передней оси.

Привод с механизмом типа «шестерня – рейка» обеспечивает поворот передних колес автомобиля на разные по величине углы.

Рулевая трапеция


Рулевая трапеция с разрезной тягой Рулевая трапеция обычно применяется в рулевом управлении с червячным или винтовым механизмом. Она состоит из:

  • боковых и средней тяг;
  • маятникового рычага;
  • правого и левого поворотного рычага колес;
  • рулевой сошки;
  • шаровых шарниров.

Каждая тяга имеет на своих концах шарниры (опоры), которые обеспечивают свободное вращение подвижных деталей рулевого привода относительно друг друга и кузова автомобиля.

Рулевая трапеция обеспечивает поворот управляемых колес на разные углы. Нужное соотношение углов поворота осуществляется путем подбора угла наклона рычагов относительно продольной оси автомобиля и длины рычагов.

Исходя из конструкции средней тяги трапеция бывает:

  • с цельной тягой, которая применяется в зависимой подвеске;
  • с разрезной тягой, используемой в независимой подвеске.

Также она может отличаться по типу расположения средней тяги: перед передней осью либо после нее. В большинстве случаев рулевая трапеция применяется на грузовых автомобилях.

Рулевой наконечник с шаровым шарниром


Шаровый шарнир Шаровой шарнир сделан в виде съемного наконечника рулевой тяги, в его состав входят:

  • корпус шарнира с заглушкой;
  • шаровой палец с резьбой;
  • вкладыши, которые обеспечивают вращение шарового пальца и ограничивают его перемещение;
  • защитный кожух (“пыльник”) с кольцом для фиксации на пальце;
  • пружина.

Шарнир выполняет передачу усилия от рулевого механизма к управляемым колесам и обеспечивает подвижность соединения элементов рулевого привода.

Шаровые опоры воспринимают все удары от неровностей дорожной поверхности и потому подвержены быстрому износу. Признаками износа шаровых опор являются люфт и стук в подвеске при проезде неровностей. В этом случае неисправную деталь рекомендуется заменить на новую.

По способу устранения зазоров шаровые шарниры подразделяются на:

  • саморегулируемые – они не требуют регулировок в процессе эксплуатации, а появившийся в результате износа деталей зазор выбирается благодаря поджиманию головки пальца с помощью пружины;
  • регулируемые – в них зазоры между деталями устраняет затяжка резьбовой крышки;
  • нерегулируемые.

Устройство гидроусилителя руля

Основные компоненты гидроусилителя руля

Гидроусилитель руля устанавливается на рулевой механизм любого типа. Для легковых автомобилей наибольшее распространение получил реечный механизм. В этом случае схема ГУР следующая:

  • бачок для рабочей жидкости;
  • масляный насос;
  • золотниковый распределитель;
  • гидроцилиндр;
  • соединительные шланги.

Бачок ГУР

Бачок гидроусилителя

В бачке или резервуаре для рабочей жидкости установлен фильтрующий элемент и щуп для контроля за уровнем масла. С помощью масла смазываются трущиеся пары механизмов и передается усилие от насоса к гидроцилиндру. Фильтром от грязи и металлической стружки, возникающей в процессе эксплуатации, в бачке служит сетка.

Уровень жидкости внутри бака можно проверить визуально в случае, когда резервуар сделан из полупрозрачного пластика. Если пластик непрозрачный или используется металлический бачок, уровень жидкости проверяется с помощью щупа.

В некоторых автомобилях уровень жидкости можно проверить только после кратковременной работы двигателя либо при вращении рулевого колеса несколько раз в разные стороны во время работы машины на холостом ходу.

На щупах или резервуарах сделаны специальные насечки, как для «холодного» двигателя, так и для «горячего», уже работающего в течение какого-то времени. Также необходимый уровень жидкости можно определить и с помощью отметок «Max» и «Min».

Насос гидроусилителя

Лопастной насос гидроусилителя

Насос гидроусилителя необходим для того, чтобы в системе поддерживалось нужное давление, а также происходила циркуляция масла. Насос устанавливается на блоке цилиндров двигателя и приводится в действие от шкива коленчатого вала при помощи приводного ремня.

Конструктивно насос может быть разных типов. Наиболее распространенными являются лопастные насосы, которые характеризуются высоким КПД и износоустойчивостью. Устройство выполнено в металлическом корпусе с вращающимся внутри него ротором с лопастями.

В процессе вращения лопасти захватывают рабочую жидкость и под давлением подают ее в распределитель и далее в гидроцилиндр.

Привод насоса осуществляется от шкива коленчатого вала, поэтому его производительность и давление зависят от количества оборотов двигателя. Для поддержания необходимого давления в ГУР используется специальный клапан. Давление, которое создает насос в системе, может достигать до 100-150 бар.

В зависимости от типа управления масляные насосы подразделяются на регулируемые и нерегулируемые:

  • регулируемые насосы поддерживают постоянное давление за счет изменения производительной части насоса;
  • постоянное давление в нерегулируемых насосах поддерживает редукционный клапан.

Редукционный клапан представляет собой пневматический или гидравлический дроссель, действующий автоматически и контролирующий уровень давления масла.

Распределитель ГУР

Схематичное устройство распределителя

Распределитель гидроусилителя устанавливается на рулевом валу или на элементах рулевого привода. Его назначение – направление потоков рабочей жидкости в соответствующую полость гидроцилиндра или обратно в бачок.

Главными элементами распределителя являются торсион, поворотный золотник и вал распределителя. Торсион представляет собой тонкий пружинистый металлический стержень, который закручивается под действием крутящего момента. Золотник и вал распределителя представляют собой две цилиндрические детали с каналами для жидкости, вставленные друг в друга. Золотник связан с шестерней рулевого механизма, а вал распределителя с карданным валом рулевой колонки, то есть с рулем. Торсион одним концом закреплен на валу распределителя, другой его конец установлен в поворотный золотник.

Распределитель может быть осевым, при котором золотник перемещается поступательно, и роторным – здесь золотник вращается.

Гидроцилиндр и соединительные шланги

Гидроцилиндр встроен в рейку и состоит из поршня и штока, перемещающего рейку под действием давления жидкости.

Схема циркуляции жидкости в гидроусилителе

Соединительные шланги высокого давления обеспечивают циркуляцию масла между распределителем, гидроцилиндром и насосом.  Масло из бачка в насос и из распределителя обратно в бачок поступает по шлангам низкого давления.

Устройство автомобиля

1.6. Рулевой привод

Рулевой привод включает в себя систему тяг, шарниров и рычагов, осуществляющих с механизмом рулевого управления поворот управляемых колес. Рулевой привод имеет рулевую трапецию, которая позволяет поворачивать управляемые колеса на разные углы, чем достигается их качение без бокового проскальзывания. Рулевая трапеция может быть задней или передней, т. е. с поперечной рулевой тягой, расположенной сзади переднего моста или перед ним. Различают цельную (единую) трапецию, применяемую при зависимой подвеске колес и расчлененную, используемую при независимой подвеске.

Рулевой привод грузовых автомобилей с зависимой подвеской включает в себя: сошку, продольную тягу, два левых поворотных рычага, поперечную тягу, правый поворотный рычаг, рулевую трапецию (шарнирный четырехугольник, образованный средней частью балки передней оси, поперечной тягой и левым и правым поворотными рычагами).

При движении автомобиля по неровной дороге на детали рулевого привода (сошку, продольную и поперечную рулевые тяги, рулевые рычаги) действуют большие нагрузки. Поэтому в рулевой привод вводят пружины для смягчения толчков и для автоматического устранения зазоров, возникающих при изнашивании деталей. Поперечная рулевая тяга на одном конце имеет левую резьбу и правую на другом для навинчивания наконечников крепления шаровых шарниров. Вследствие этого можно изменять расстояние между шарнирами при регулировании схождения управляемых колес.

При независимой подвеске управляемых колес легковых автомобилей рулевой привод (рис. 142) включает в себя (с червячным механизмом рулевого управления): сошку; маятниковый рычаг; составную поперечную тягу, состоящую из средней тяги, шарнирно соединенной по концам с сошкой и маятниковым рычагом и две боковые тяги; левый и правый поворотные рычаги.

Рис. 142. Рулевые тяги автомобиля ГАЗ-24 «Волга»: 1 — шплинт; 2 — резьбовая пробка; 3 — пружина; 4 — опорная пята; 5 — корпус шарнира; б и 10 — резиновые уплотнители; 7 — распорная втулка наконечника; 8 — гайка; 9 — распорная втулка тяги; 11 — шаровой палец; 12 — корпус шарнира; 13 — полиэтиленовый сухарь; 14 — маятниковый рычаг; 15 — втулка из порошкового материала; 16 — резиновая втулка рычага; 17 — поперечная тяга; 18 — боковая тяга; 19 — сошка; 20 — болт; 21 — стяжной хомут; 22 — регулировочная трубка; 23 — наконечник тяги; 24 — рычаг поворотного кулака

Независимая подвеска легковых автомобилей с реечным механизмом рулевого управления состоит из составной поперечной тяги, средней частью которой является зубчатая рейка механизма рулевого управления, к ней шарнирно крепятся (по концам или в одном месте) боковые тяги. Боковые тяги, в свою очередь, крепятся шарнирно к поворотным рычагам (левому и правому). Трапеция состоит из средней части передней оси, составной поперечной тяги и поворотных (левого и правого) рычагов.

Шарниры рулевых приводов. Основные требования, предъявляемые к шарнирам рулевого привода (рис. 143), заключаются в беззазорности и износостойкости. Поэтому все шарниры поджаты скользящей поверхностью путем деформации упругого элемента. В шарнирном соединении шарового пальца с продольной рулевой тягой один из сухарей (вкладыш) представляет собой жесткую опору, а другой опирается на пружину. Внешний сухарь прижат к шаровому шарниру резьбовой пробкой.

Рис. 143. Шарнирное соединение деталей рулевого привода автомобилей: а — ГАЗ-53А; 6 — ЗИЛ-130; в — MA3-5335; 1 — масленка; 2 — пята; 3 — коническая пружина; 4 — крышка; 5 — стопорное кольцо; 6 и 15 — наконечники; 7 и 17— трубы; 8 — резиновое кольцо; 9 — обойма; 10 — резиновый колпак; 11 — кольцо; 12 — полусферический палец; 13 и 19 — сухари; 14 — сменный вкладыш; 16 — хомут; 18 — пробка; 20 — пружина; 21 — ограничитель

Во всех соединениях сухари постоянно прижимаются к головке шарового пальца под действием пружин. Шарниры тяг с полусферическими пальцами саморегулирующиеся разборные. Использование высококачественных конструкционных материалов для сухарей, современных смазочных материалов и надежных уплотнений позволяет в настоящее время применять шарниры, не требующие замены смазочного материала в течение всего их срока службы.

Жестко подключаемый, или полный привод Part-time

Этот тип привода считается самым простым и надежным, так как не имеет никаких сложных систем, которые должны отвечать за автоматическое распределение тяги по осям. По умолчанию крутящий момент передается только на одну ось, вторая ось включается только по необходимости с помощью раздаточной коробки с кулачковой муфтой. При включении «раздатки» обе оси жестко соединяются между собой, обеспечивая постоянное симметричное распределение крутящего момента.

Несмотря на конструктивную простоту, система имеет значимую особенность: невозможность ездить в режиме полного привода постоянно, а также на высоких скоростях и по ровным сухим поверхностям. Вернее, ездить-то можно, только с огромной вероятностью повредить систему полного привода.

Дело в том, что при повороте каждое из четырех колес вращается с разной скоростью и проходит свою траекторию поворота. Между осями нет никаких систем, компенсирующих разность этих скоростей, а потому вся нагрузка ложится на «раздатку», которая со временем и выходит из строя. Проще говоря, подключать вторую ось необходимо только для увеличения проходимости автомобиля на покрытиях, допускающих проскальзывание колес, таких как грязь, песок, снег, лед или в крайнем случае сильный дождь.

Проблемы

Что же касается технических проблем, то основной причиной выхода из строя раздаточной коробки как раз является пренебрежение правилами использования полного привода. Например, «раздатка» регулярно ломается на автомобилях Suzuki Jimny в силу того, что основными потребителями этого автомобиля являются представительницы прекрасной половины человечества, не особо разбирающиеся в конструктивных нюансах системы Part-time.

Если жесткое включение происходит не старым добрым рычагом, а с помощью электропривода, то система может не включиться. Происходит это чаще всего на стоящей машине, потому что зубья валов не попадают в зацеп и электроника дает отбой. Неисправностью это не является и исправляется просто накатом, чтобы в момент движения зацеп все же произошел.

Очень часто автомобили с системой Part-time являются объектами серьезного внедорожного тюнинга, а следовательно, и жесточайших нагрузок. Так что развалившиеся межколесные дифференциалы, оборванная цепь переднего вала и менянные главные передачи — не редкость на подобных авто. Однако в большинстве случаев узел настолько прост и надежен, что может вызвать вопросы лишь в случае огромных пробегов или халатного отношения владельца, например к замене масла.

Что автолюбители говорят о приводе машины

Кому нужен задний?

«Как только появились дешевые ШРУС, так сразу же передний привод стал мегапопулярным. Ну, и полный привод тоже. Переднеприводная компоновка объективно дешевле, ведь КПП и главная передача фактически расположены в едином корпусе. А задний мост – это раритет для собирателей антиквариата и ценителей классики».

Мифы о заднем приводе

«Многие просто боятся садиться за руль машины с задним приводом, особенно зимой. Но у страха глаза велики. На самом деле, ничего опасного или сложного в этом нет, если, конечно, нет желания подрифтовать на гололеде. Ведите аккуратно, и машина удивит вас своей управляемостью. Кстати, передний привод часто дергает руль при начале движения – та еще радость!»

Выгоды переднего привода

«Сначала 5 лет ездил на машине с задним приводом, потом пересел на переднеприводную и оценил разницу. На переднем приводе ездить значительно менее хлопотно. На заднем нужно думать и оценивать ситуацию перед маневром (занесет/не занесет), а передний привод все вытягивает – надо просто ехать. Пусть будет побольше передних приводов на дорогах – глядишь, и опасных лихачей не так заметно будет».

Влияние технологий

«Сейчас трудно категоризировать современные автомобили по степени управляемости. Столько разной электроники в них установлено, которая и занос предотвратит, и ось заблокирует, и курсовую устойчивость обеспечит. Так что была бы аккуратность, а управляемость уже есть».

Самый лучший

«Обожаю полный привод! Не важно, есть дорога или нет ее – я все равно проеду!»

Итог: передний привод лучше всего подходит, если обычно практикуется размеренная езда без интенсивных, опасных маневров. Такой привод и дешевле, и эксплуатационные расходы у него ниже. К тому же места в салоне реально больше. Задний привод оценят любители быстрой езды. Такое авто и увереннее разгоняется, и на больших скоростях устойчивее.

Полный привод отличается безусловной проходимостью, а также самой высокой управляемостью на скользких поверхностях. Такие автомобили, как правило, более дорогие, тяжелые и сложные в обслуживании, но зато престижные

В целом, не важно, какой привод у машины. Главное – это умелый и уверенный стиль вождения.

Гидравлический усилитель руля

Поэтому в середине столетия воздух сменила жидкость. Гидравлические усилители лишены недостатков предшественника. Приводимый двигателем насос создает необходимое давление. Распределитель, связанный с рулевым валом, отслеживает угол поворота «баранки» и сопротивление на ней, дозируя количество масла, направляемого в дополнительное устройство, которое и поворачивает колеса. Оно может стоять отдельно от рулевого механизма или составлять с ним единое целое. В последнем случае гидроусилитель называют интегральным. Его-то в основном и применяют на легковых автомобилях — от «Лады» до «Мерседеса».

Гидроусилитель еще и сглаживает толчки от неровностей дороги, приходящие на «баранку». При этом «гидравлика» настолько эффективна, что позволяет удержать машину на дороге, даже если вдруг лопнет покрышка и сопротивление на рулевом колесе резко многократно возрастет. Улучшается маневренность — от упора до упора «баранку» крутить надо меньше.

Минусы гидроусилителя вытекают из его сложности. В нем необходимо контролировать уровень жидкости, следить за герметичностью магистралей, менять масло и т.п. Насос усилителя работает постоянно, независимо от того, поворачивает водитель руль или нет. Значит, двигатель теряет впустую ни много ни мало около 7% мощности (для городской микролитражки — существенная цифра). Давление в системе напрямую зависит от оборотов коленвала. Поэтому при маневрах на малых скоростях или при быстром вращении «баранки» производительности насоса не хватает. Руль, как говорится, «закусывает». А на трассе он, наоборот, становится «пустым», теряется «чувство дороги» — ведь при высоких оборотах мотора усилитель работает по максимуму, чтобы решить эту проблему применяют специальные устройства (насос с переменной производительностью, различные клапаны, модуляторы и т.д.), усложняя и удорожая и без того сложный механизм. Кроме того, вся система очень тяжелая. Покупателю это не принципиально, а вот конструктор для сохранения заданных параметров автомобиля (ресурс, максимальная скорость и т.д.) вынужден увеличивать мощность двигателя, усиливать другие элементы, что в свою очередь удорожает машину.

Классификация системы рулевого управления

Системы рулевого управления можно класси­фицировать следующим образом:

Мускульная система рулевого управления

Необходимые усилия рулевого управления генерируются исключительно мускульной энергией водителя. Эти системы рулевого управления в настоящее время используются в самых маленьких легковых автомобилях.

Система рулевого управления с усилителем

Усилия рулевого управления генерируются му­скульной энергией водителя и вспомогательной силой, реализуемой гидравлически и в послед­нее время все чаще электрически. Эта система рулевого управления в настоящее время ис­пользуется в легковых и грузовых автомобилях.

Фрикционная система рулевого управления

Усилия рулевого управления создаются си­лами, воздействующими на контактное пятно шины. Примером такой системы могут слу­жить поддерживающие мосты в грузовиках. Передача рулевых и вспомогательных сил происходит механически, гидравлически или электрически либо сочетаниями этих трех компонентов.

Применяемые виды устройств для различных моделей авто

Рулевой механизм обеспечивает управление колёс, без чего невозможно управлять транспортным средством. На легковых автомобилях элементы рулевого механизма отвечают за управление колёс передней оси.

Для обеспечения лучшей управляемости машины за счёт полного контроля над ней применяются полноуправляемые системы, в которых передние и задние колеса за счёт подсоединения к механизмам отклоняются на нужный угол.

Расположение рулевого управления может быть с правой или с левой стороны. Система также классифицируется по способу поворота транспортного средства, который может быть представлен поворотом колёс, складыванием элементов, торможением или вращением колес одного борта. Управляемые колёса могут быть расположен на одной или на обеих осях.

Требования к системе рулевого управления

Система рулевого управления преобразует соз­даваемые водителем вращательные движения рулевого колеса в изменение угла поворота управляемых колес автомобиля. Конструкция и схема системы призваны обеспечить удобное и безопасное рулевое управление автомобиля во всех ситуациях и на всех скоростях. Вся си­стема рулевого управления, от рулевого колеса и до управляемых колес, должна в этих целях обладать следующими свойствами.

Передача инициируемых водителем руля­щих движений на рулевом колесе без люфта особенно важна при движении по прямой. Это гарантирует безопасное, неутомительное для водителя управление автомобилем, пре­жде всего на средних и высоких скоростях.

Поэтому рулевой механизм должен быть очень жестким. Это необходимо для обеспе­чения точной управляемости и преодоления отклонения от заданного угла поворота ру­левого колеса под действием изменяющихся возвратных сил, возникающих, например, при изменении бокового ускорения.

Слабое трение в рулевом механизме по­зволяет водителю получать через реактивные силы тактильную обратную связь, дающую информацию о коэффициенте сцепления между дорогой и шинами. Слабое трение также помогает колесам выровняться для движения по прямой. В системах рулевого управления с мускульной энергией слабое трение обеспечивает небольшие движущие силы. В системах рулевого управления с усилителем оно повышает эффективность управления.

Кинематические параметры рулевого управления и конструкция управляемой оси автомобиля должны быть такими, чтобы во­дитель мог чувствовать величину сцепления между шинами и дорогой.

Требования к рулевому управлению

Требованиями к функционированию системы рулевого управления являются:

Легкое, безопасное рулевое управление автомобилем. Сюда, к примеру, относится тенденция рулевого управления автоматиче­ски возвращаться в положение прямолиней­ного движения при отпускании руля.

Максимально возможное демпфирование колебаний, передаваемых от колес автомо­биля на рулевое колесо при движении по не­ровным дорогам. Но этот процесс не должен приводить к потере обратной связи в рулевом управлении.

Для обеспечения чистого качения колес и, соответственно, предотвращения их из­быточного износа вся рулевая кинематика должна удовлетворять условию Аккермана. Это означает, что оси управляемых колес должны пересекаться в одной точке с осью задних колес (рис. «Условие Аккермана» ).

Достаточно жесткая схема всех компонен­тов рулевого механизма означает, что даже малые инициируемые водителем рулевые движения преобразуются в изменение на­правления управляемых колес, обеспечивая безопасную и точную управляемость авто­мобиля.

Угол поворота рулевого колеса от упора до упора по соображениям комфорта дол­жен быть как можно меньше при парковке и движении с небольшой скоростью. Однако на средних и высоких скоростях рулевое управ­ление не должно быть столь чувствительным.

Требования законодательства, предъявляемые к системам рулевого управления автомобилей

Требования законодательства, предъявляе­мые к системам рулевого управления автомо­билей, описаны в международных правилах ECE-R79. К этим требованиям, наряду с базовыми функциональными требованиями, относятся максимально допустимые управ­ляющие силы для исправной и неисправной систем рулевого управления. Эти требования регламентируют прежде всего поведение ав­томобиля и рулевого управления при въезде на круг и выезде с круга. Для автомобилей всех категорий: после отпускания рулевого колеса при движении автомобиля по окруж­ности на скорости 10 км/ч, радиус поворота автомобиля должен увеличиться или как ми­нимум остаться тем же.

Для автомобилей категории М1 (легко­вые автомобили с числом посадочных мест до 8): когда автомобиль в тангенциальном направлении выезжает из круга с радиусом 50 м на скорости 50 км/ч, в системе рулевого управления не должно возникать никаких не­обычных вибраций. В автомобилях категорий М2, М3, N1, N2 и N3 это поведение должно демонстрироваться на скорости 40 км/ч или, если это значение не достигается, то на мак­симальной скорости.

Это поведение также предписывается в случае неисправности у автомобилей с гидро- или электроусилителем рулевого управления. У автомобилей категории М1 это должно быть возможно в случае отказа сер­вопривода рулевого управления для въезда со скоростью 10 км/ч в течение 4 секунд в круг радиусом 20 м. Управляющее усилие на рулевом колесе не должно превышать 30 даН (табл. «Нормы рабочих усилий в системе рулевого управления» ).

Требования к рулевому управлению автомобиля

Согласно стандарту, к рулевому управлению применяются следующие основные требования:

  • Обеспечение заданной траектории движения с необходимыми параметрами поворотливости, поворачиваемости и устойчивости.
  • Усилие на рулевом колесе для осуществления маневра не должно превышать нормированного значения.
  • Суммарное число оборотов руля от среднего положения до каждого из крайних не должно превышать установленного значения.
  • При выходе из строя усилителя должна сохраняться возможность управления автомобилем.

Существует еще один стандартный параметр, определяющий нормальное функционирование рулевого управления — это суммарный люфт. Данный параметр представляет собой величину угла поворота руля до начала поворота управляемых колес.

Значение допустимого суммарного люфта в рулевом управлении должно быть в пределах:

  • 10° для легковых автомобилей и микроавтобусов;
  • 20° для автобусов и подобных транспортных средств;
  • 25° для грузовых автомобилей.

Как меняется трапеция в сборе

Если нет специального съемника, то можно извлечь палец при помощи молотка. Для этого необходимо наносить удары вдоль оси по рычагу. Желательно заблаговременно обработать все элементы проникающей смазкой. Это немного облегчит проведение работ.

Аналогичным образом выкручивается вторая гайка и выпрессовывается палец. Только после этого можно полностью снять рулевой наконечник или центральную тягу.

При замене рулевой трапеции вам необходимо отсоединить:

Тяги от поворотных кулаков, которые расположены на ступицах колес.
Шарниры от рычага на редукторе рулевого управления.

По времени это выйдет намного меньше, нежели замена всех наконечников по очереди. Усилитель руля, если он установлен на автомобиле, не нужно демонтировать.

Лыжи

Рис.2.

А – грейдерным положение, Б – бульдозерное положение, В – положение путепрокладчика. 1 – крыло, 2 – захват; 3 – телескопическая штанга; 4 и 13 – крюки; 5, 12, 18 – гидроцилиндры, 6 – толкающая рама, 7 – поперечная балка; 8 и 14 – рычаги; 9 и 11 – гидроцилиндры механизма перекоса; 10 – трубчатая цапфа; 15 – лыжа; 16 – цепь; 17 – полоз лыжи; 18 – палец; 20 – отвал; 21 – крышка; 22 – ножи отвала.

Разрыхлительное оборудование

предназначено для разрыхления твердых и мерзлых верхних слоев почвы. Оно установлено в задней части базовой машины и состоит из рабочего элемента и привода перемещения.

Рабочий элемент

состоит из стойки, наконечника и деталей крепления. Стойка является несущим элементом. Наконечник, который имеет устойчивое к износу наплавки, является переменной частью и непосредственно осуществляет отделение разрушения грунта при движении путепрокладчика.

Привод перемещения

рабочего элемента представляет собой Параллелограммную конструкцию, которая состоит из двух верхних тяг, рамы, корпуса и двух гидроцилиндров. Параллелограммная конструкция обеспечивает постоянный угол резания независимо от величины заглубления рабочего элемента в грунт.

Разрыхления твердых и мерзлых грунтов осуществляется на задней передаче с включением реверса вперед. Рабочим элементом нарезают ряд продольных борозд на глубину 0,5 м с расстоянием между ними 0,7-0,9 м. При необходимости нарезаются поперечные борозды под углом 50-60 градусов к продольным.

Достоинства переднего привода


1. У переднеприводных автомобилей движок ставится поперек авто, за счет которого вращение коленвала сразу передается колесам. Получается, что количество переходников крутящего момента резко падает, что нельзя не назвать преимуществом для работы техники. 2. Передней приводной осью при такой комплектации можно даже гордиться. Ведь она берет всю нагрузку машины на себя, хотя масса мотора тут немалая. При этом получается, что сама ось, ведущая, и сцепление с дорогой обеспечивается наилучшим образом.

Вне зависимости от погоды водить переднеприводную машину будет намного легче. Она управляемая и послушная даже в снег и гололед. Но нагнетать скорость в такую погоду владельцам не стоит, это чревато тем, что машину начнет заносить на скорости.

3. Как уже говорилось выше переднему приводу мы обязаны за свободное место под капотом и даже в салоне, а также тому, что стоимость такого авто более доступна, нежели с задним приводом.

Постоянный полный привод

Автомобили с такой системой полного привода всегда передают крутящий момент на все четыре колеса, что понятно из англоязычного названия Full-time. В своей основе система оснащена межосевым дифференциалом, который имеет несколько конструктивных вариантов: симметричный и несимметричный, блокируемый и неблокируемый. Блокировка, в свою очередь, может выполняться в автоматическом или ручном режиме. Все это зависит от того, для каких целей создается полный привод. Чаще всего используется самоблокируемый дифференциал, который также может быть выполнен на основе одной из трех систем: вязкостной или фрикционной муфты и с блокировкой типа Torsen.

Если в двух словах, то система Full-time и конструктивно, и функционально совмещает в себе принцип работы систем Part-time и On-demand. Дифференциал напрямую передает крутящий момент от одной оси к другой, а установленная с ним в одном корпусе муфта в зависимости от степени блокировки может перераспределять этот момент исходя из условий. Навороченные системы с двумя приводными валами, наподобие трансмиссии SuperSelect от Mitsubishi, умеют дополнительно «отстегивать» одну ось, превращаясь в отключаемый полный привод.

Дифференциал Torsen

Отдельно стоит упомянуть трансмиссию на основе дифференциала Torsen, который становится все популярнее. У него вместо муфт используется три пары червячных шестерней, которые осуществляют перераспределение момента. В свободном состоянии распределение тяги по осям равное, как только скорости вращения колес начинают отличаться, вращение шестерней заставляет частично блокироваться выходные валы, передавая момент на колесо с лучшим зацепом.

В зависимости от задач автомобили с подобными системами также дополнительно комплектуются задним (и иногда передним) блокируемым межколесным дифференциалом, понижающим редуктором и даже дополнительной муфтой. Комбинации могут быть совершенно разными в зависимости от задач — внедорожных, спортивных или экономящих топливо. Например, трансмиссия от Audi на легковых моделях и кроссоверах — quattro ultra — имеет многодисковую межосевую муфту и дополнительно дифференциал с кулачковой муфтой в приводе задней оси, также способной к полному отключению.

Система Quattro Ultra Full-Time (слева) и планетарный редуктор Mercedes-Benz (справа)

Проблемы

Как ни трудно догадаться, из-за невероятной сложности отдельных конструкций любая неисправность систем постоянного полного привода грозит непростым и недешевым ремонтом.

Системы на основе вязкостных и фрикционных муфт, как и в случае с системами On-demand, склонны к перегреву. Не избежал этой участи и дифференциал Torsen, шестерни которого также сильно нагреваются и требуют для охлаждения специального графитового масла.

Кроме того, на автомобилях Audi, например, дифференциал находится в блоке коробки передач DSG, так что любая проблема с «роботом» автоматически ведет к разбору и этого механизма. На сложных системах с отдельным передним валом прибавляйте встречающиеся проблемы привода — его включения/отключения либо датчика работы.

Соответственно, всевозможные датчики и управляющие электронные блоки при сбое и трансмиссию выводят из правильного режима работы. То же самое касается работы коробки передач, функционирование которой напрямую влияет на работу полного привода. Люфты карданов и вой редукторов — частая болезнь серьезных внедорожников.

Устройство дифференциала на спортивных полноприводных моделях Audi

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Велодром
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: