Аткинсон, миллер, процесс b-цикла: что это на самом деле означает

Краткое содержание патента [ править ]

Приведенный выше обзор может описывать современную версию цикла Миллера, но он в некоторых отношениях отличается от патента 1957 года. В патенте описан «новый и улучшенный метод работы двигателя с наддувом и промежуточным охлаждением». Двигатель может быть двухтактным или четырехтактным, а топливо может быть дизельным, двухтопливным или газовым. Из контекста ясно, что «газ» означает газообразное топливо, а не бензин . Нагнетатель, показанный на схемах, представляет собой турбокомпрессор., а не нагнетатель прямого вытеснения. Двигатель (четырехтактный или двухтактный) имеет обычную схему расположения клапанов или каналов, но дополнительный «клапан контроля сжатия» (CCV) находится в головке блока цилиндров. Сервомеханизм, управляемый давлением во впускном коллекторе, управляет подъемом CCV во время части такта сжатия и выпускает воздух из цилиндра в выпускной коллектор. CCV будет иметь максимальный подъем при полной нагрузке и минимальный подъем без нагрузки. В результате получается двигатель с переменной степенью сжатия . При повышении давления во впускном коллекторе (из-за действия турбонагнетателя) эффективная степень сжатияв цилиндре опускается (из-за увеличения подъемной силы ККТ) и наоборот. Это «обеспечит надлежащий запуск и зажигание топлива при малых нагрузках».

Отличие от традиционных двигателей

Напомним, что цикл Аткинсона является четырехтактным
(впуск, сжатие, расширение, выброс). Обычный четырехтактный двигатель работает по циклу Отто. Вкратце, напомним его работу. В начале рабочего хода в цилиндре поршень идет вверх, до верхней рабочей точки. Смесь из топлива и воздуха сгорает, газ расширяется, давление на максимуме. Под влиянием этого газа поршень едет вниз, приходит в нижнюю мертвую точку. Рабочий ход окончен, открывается выпускной клапан, через который выходит отработанный газ. В этом месте происходят потери выпуска, т.к. отработанный газ все же имеет остаточное давление, использовать которое невозможно.

Аткинсон уменьшил потерю выпуска. В его двигателе объем камеры сгорания меньше при прежнем рабочем объеме. Это значит, что степень сжатия выше, а ход поршня больше
. К тому же, длительность такта сжатия по сравнению с рабочим ходом уменьшается, двигатель работает по циклу с увеличенной степенью расширения (степень сжатия ниже степени расширения). Эти условия позволили уменьшить потерю выпуска, используя энергию отработанных газов.

Вернемся к циклу Отто. При всасывании рабочей смеси дроссельная заслонка закрыта и создает сопротивление на впуске. Происходит это при неполном нажатии на педаль газа. Из-за закрытой заслонки двигатель тратит энергию впустую, создавая насосные потери.

Аткинсон поработал и с тактом впуска. Продлив его, сэр Джеймс добился уменьшения насосных потерь. Для этого поршень доходит до нижней мертвой точки, затем поднимается, оставляя впускной клапан открытым примерно до половины поршневого хода. Часть топливной смеси возвращается во впускной коллектор. В нем повышается давление, что дает возможность приоткрывать дроссельную заслонку на малых и средних оборотах
.

Но в серию аткинсоновский мотор не выпускали по причине перебоев в работе. Дело в том, что, в отличие от ДВС, мотор работает только на повышенных оборотах. На холостом ходу он может заглохнуть. Но эта проблема решилась в производстве гибридов. На малых скоростях такие машины едут на электоротяге, а на бензиновый движок переходят только в случае разгона или при нагрузках. Подобная модель как убирает недостатки двигателя Аткинсона, так и подчеркивает его достоинства перед другими ДВС.

История изобретения[править | править код]

Джеймс Аткинсон критически пересмотрев классическую концепцию двигателя, работающего по циклу Отто, понял, что её можно серьёзно улучшить. Так, например, у двигателя Отто на малых и средних оборотах при частично открытой дроссельной заслонке через разрежениe во впускном коллекторе поршни работают в режиме насоса, на что тратится мощность двигателя. При этом усложняется наполнениe камеры сгорания свежим зарядом топливо-воздушной смеси. Кроме этого, часть энергии теряется в выпускной системе, поскольку отработанные газы, покидающие цилиндры двигателя, всё ещё находятся под высоким давлением.

По концепции Аткинсона, впускной клапан закрывается не тогда, когда поршень находится у нижней мертвой точки, а значительно позже. Цикл Аткинсона дает ряд преимуществ.

Во-первых, снижаются насосные потери, так как часть смеси при движении поршня вверх выталкивается во впускной коллектор, уменьшая в нем разрежение.

Во-вторых, меняется степень сжатия. Теоретически онa остается постоянной, так как ход поршня и объем камеры сгорания не изменяются, а фактически за счет запоздалого закрытия впускного клапана уменьшается. А это уже снижение вероятности появления детонационного сгорания топлива, и следовательно — отсутствие необходимости увеличивать обороты двигателя переключением на пониженную передачу при увеличении нагрузки.

Двигатель Аткинсона работает по так называемoмy циклу с увеличенной степенью расширения, при котором энергия отработавших газов используется в течение длительного периода. Это создает условия для более полного использования энергии отработанных газов и обеспечивает более высокую экономичность двигателя.

Основным отличием от цикла работы обычного 4-тактного двигателя (цикла Отто) является изменение продолжительности этих тактов. В традиционном двигателе все 4 такта (впуск, сжатие, рабочий ход и выпуск) одинаковы по продолжительности. Аткинсон же сделал два первых такта короче, а два следующих длиннее и реализовал это за счёт изменения длины ходов поршней. Считается, что его модификация двигателя была продуктивнee традиционной на 10%. В то время его изобретение не нашлo широкого применения, так как имелo большое количество недостатков, основным из которых стала сложность реализации этого изобретения, а именно обеспечение движения поршней с использованием оригинального кривошипно-шатунного механизма.

Позже, в начале 1950-х годов американский инженер Ральф Миллер (англ. Ralph Miller) смог решить эту же задачу по-другому. Такт сжатия был сокращён путём внесения изменений в работу клапанов.Обычно на такте впуска открывается впускной клапан, и до наступления такта сжатия он уже закрыт. Но в цикле Миллера впускной клапан продолжает находиться в открытом состоянии некоторую часть такта сжатия. Таким образом, часть смеси удаляется из камеры сгорания, само сжатие начинается позже и соответственно его степень оказывается ниже. По сравнению с тактом сжатия, такт рабочего хода и выпуска оказываются продолжительными. Именно от них и зависит КПД двигателя. Рабочий ход создает силу для движения, а длительный выпуск лучше сохраняет энергию выхлопных газов.

Второй такт условно разделён на две части. Такую схему иногда называют пятитактным двигателем. В первой части впускной клапан открыт и происходит вытеснение смеси, далее он закрывается, и только тогда происходит сжатие.

На гибридных автомобилях

возможно применение двигателя Аткинсона, так как в них двигатель работает в малом диапазоне частот вращения и нагрузок. Однако на современных автомобилях, таких как Toyota Prius, применяют не двигатель Аткинсона, а его упрощённый аналог, построенный по принципу цикла Миллера. Следует заметить, что номинальная степень сжатия 13:1 данных двигателей не соответствует фактической, т.к. сжатие начинается не сразу в начале хода поршня вверх, а с запозданием, воздушно-топливная смесь некоторое время выталкивается обратно. Поэтому реальная степень сжатия аналогична классическим ДВС цикла Отто. При этом рабочий ход движения поршня вниз становится длиннее обычного, тем самым используя энергию расширяющихся газов с большей эффективностью, что увеличивает КПД и снижает расход топлива. Гибридный автомобиль разгоняется электромотором, который выдаёт полную мощность в широком диапазоне оборотов.

Toyota Prius Бензиновый двигатель работает по циклу Аткинсона со сжатием 13:1 на бензине (АИ-95).

Время закрытия впускного клапана, обороты и нагрузку на двигатель контролирует бортовой компьютер.

Дизайн [ править ]

Аткинсон произвел три различных конструкции с коротким ходом сжатия и более длинным ходом расширения. Первый двигатель с циклом Аткинсона, дифференциальный двигатель , использовал оппозитные поршни. Второй и наиболее известной конструкцией был циклический двигатель , в котором использовался центральный рычаг для создания четырех тактов поршня за один оборот коленчатого вала. Поршневой двигатель имел потребление, сжатие, мощность и выхлопные удары в четырехтактном цикле в одном повороте коленчатого вала , и был разработан , чтобы избежать нарушений определенных патентов , охватывающих Отто цикла двигателей. Третий и последний двигатель Аткинсона, утилитарный двигатель., работает как любой двухтактный двигатель.

Общей чертой всех конструкций Аткинсона является то, что у двигателей ход расширения длиннее хода сжатия, и с помощью этого метода двигатель достигает большей тепловой эффективности, чем традиционный поршневой двигатель. Двигатели Аткинсона были произведены British Gas Engine Company, а также лицензированы для других зарубежных производителей.

Многие современные двигатели теперь используют нетрадиционные фазы газораспределения, чтобы добиться эффекта более короткого хода сжатия / более длительного рабочего хода. Миллер применил эту технику к четырехтактному двигателю, поэтому его иногда называют циклом Аткинсона / Миллера, патент США 2817322 от 24 декабря 1957. В 1888 году Харон подал заявку на французский патент и представил двигатель в Париже. Выставка 1889 года. В газовом двигателе Charon (четырехтактном) использовался цикл, аналогичный циклу Миллера, но без нагнетателя. Его называют «циклом Харона».

Рой Федден в Бристоле в 1928 году испытал конструкцию двигателя Bristol Jupiter IV с изменяемой синхронизацией замедления, позволяющей части заряда возвращаться во впускной коллектор, чтобы обеспечить устойчивое снижение рабочего давления во время взлета. необходима цитата

Современные конструкторы двигателей осознают потенциальные улучшения топливной эффективности, которые может обеспечить цикл типа Аткинсона.

5 типичных ошибок в понимании и применении цикла Колба

Мы уже упоминали типичное упрощение-заблуждение: якобы по этапам цикла Колба нужно двигаться в строгой последовательности от CE до AE. Кроме того, многие даже не слышали о второй части модели — об учебных стилях и о том, что они могут влиять на то, как студент проходит этапы цикла. Рассмотрим, какие ещё ошибки чаще всего случаются при проектировании обучения с помощью цикла Колба.

Слепо следовать всем шагам цикла там, где это не нужно

Павел Безяев, лидер и сооснователь сообщества Digital Learning, рассказывает, что реализовывать все четыре шага цикла Колба в проектировании курса нужно далеко не всегда. Например, если у человека к моменту подхода к курсу уже сформирована мотивация, он понимает, какую проблему хочет решить обучением, то этапы конкретного опыта и рефлексивного наблюдения ему в курсе не нужны, он прошёл их самостоятельно. Но разработчики зачастую усложняют контент и подачу материала, проводя студента через все четыре фазы цикла и не задавая себе вопрос, зачем они это делают.

Тогда получается, что студент, которому нужно просто получить информацию, вынужден продираться к ней через дебри ненужных ему этапов. В этом случае, говорит Павел, цикл превращается в бездумное повторение методики без понимания её сути. Ничего, кроме раздражения, это у студента не вызывает.

Забыть о том, что некоторые этапы цикла могут пройти вне спроектированного курса

Сергей Жданов напоминает, как важен в модели Колба принцип непрерывной связи процесса обучения и опыта. При этом какие-то этапы цикла Колба, например активное экспериментирование, могут проходить за пределами образовательного пространства. В таких случаях, объясняет Сергей, полезно оснастить учащихся инструментами для самооценки или фиксации наблюдений.

Не создать опыт и не обеспечить рефлексию на самом деле

Елена Тихомирова уверена, что создание опыта и проектирование рефлексии у взрослых — отнюдь не тривиальная задача. Эксперт приводит в пример 3D‑симуляторы в играх о выживании в экстремальных условиях и сомневается, что задания типа «собери продукты на случай чрезвычайной ситуации в 3D‑корзину» могут обеспечить студенту конкретный опыт.

Сергей Жданов поддерживает эту мысль — он считает, что цикл Колба может «не поворачиваться» по тем же причинам.

«Опыт не равен действию, опыт не равен впечатлениям, опыт не равен образовательным результатам. Это вообще другая материя для проектирования. Она сложная и требует понимания сути целевой деятельности, а не просто структуры», — утверждает Сергей.

Не учитывать специфику применения цикла Колба в групповом обучении

Сергей Жданов предупреждает о важной особенности применения цикла Колба в курсе со сложным учебным материалом, предназначенном для неоднородной по уровню знаний группы участников. А именно: участники такого курса совершают личный переход по циклу не одновременно, а в разные моменты, индивидуально

Для модели Колба это нормальный и естественный факт, но многие разработчики обучения упускают этот нюанс и верят в то, что есть универсальный опыт, применимый ко всем студентам одновременно, или есть единственно верный вывод по результатам рефлексии этого опыта. От этого страдает и качество курса, и студенты.

Не адаптировать порядок этапов цикла под целевую аудиторию обучения

Сергей приводит в пример классическую задачу в корпоративном обучении — тренинги по продажам для уже опытных продажников. Здесь вряд ли стоит начинать с конкретного опыта, он уже есть у студентов. Чтобы «цикл повернулся», можно начать с концептуализации имеющегося опыта или даже с практики на усложнённых примерах.

Словом, подводя итог нашему обзору практики применения цикла Колба, можно сделать главный вывод: Дэвид Колб описал модель простую лишь на первый взгляд, но сложную и комплексную, если действительно в неё вникнуть.

Переменная степень сжатия

Показатель является очень важным. Ведь мощность, коэффициент полезного действия и экономичность напрямую зависят от высокой степени сжатия. Естественно, повышать бесконечно ее нельзя. Поэтому с некоторых пор развитие остановилось. В противном случае появлялся риск детонации, которая могла привести к порче двигателя.

Особенно сильно этот показатель отражается на моторах с наддувом. Ведь нагреваются они сильнее, а поэтому и процент вероятности срабатывания детонации здесь существенно выше. Поэтому степень сжатия иногда приходится снижать, из-за чего, естественно, и падает эффективность мотора.

В идеале степень сжатия должна меняться плавно в зависимости от рабочего режима и нагрузки. Разработок было очень много, но все они слишком сложные и дорогостоящие.

Как правильно формулировать цели

Цикл Деминга состоит из нескольких пунктов, первым из которых является планирование. Разработка плана начинается с выявления проблемы путем разностороннего анализа бизнес-процессов, поиска путей решения и постановки четкой, конкретной и измеримой цели. Если на этом этапе будут допущены грубые ошибки, весь цикл будет выполнен неэффективно, и повлечет за собой ненужные финансовые расходы.

Нельзя ориентироваться на прошлые цели, используя устаревшие данные по рынку, отрасли, конкурентам. Цели должны соответствовать реальной ситуации, имеющимся возможностям и ресурсам. Неэффективным также является планирование, в котором есть глобальные задачи, но нет детальной разбивки на мелкие действия.

Этапы правильного формирования целей, которые помогут улучшить процессы или качество готовой продукции (оказываемых услуг):

  1. Постановка адекватной цели. Основной целью любой коммерческой организации является прибыль (не большой объем выручки, не доход, а чистая прибыль). Чтобы увеличить сумму чистой прибыли, при планировании необходимо ставить цели с учетом ряда факторов. К таким факторам относятся рентабельность продуктов, рекламный эффект маркетинговых мероприятий, себестоимость производства, сезонность продаж, экономическая ситуация в стране и пр.
  2. Проверка цели на реалистичность, достижимость. Для того, чтобы конкретизировать цель и сделать ее достижимой, используется технология SMART. Конкретизируются все качественные и количественные показатели, которых нужно достичь. Анализируется наличие ресурсов для достижения (финансы, исполнители с соответствующей квалификацией и навыками, необходимое оборудование, технологии, другие ресурсы). За каждым действием закрепляется исполнитель, указываются дедлайны. 
  3. Декомпозиция цели. Разделение большой стратегической цели на мелкие подцели.Например, разбираем крупную цель по прибыли на более мелкие.

Цикл Отто

Начнем мы с самого главного цикла работы, который используют практически все ДВС в наше время. Назван он в честь Николауса Августа Отто, немецкого изобретателя. Первоначально Отто использовал наработки бельгийца Жана Ленуара. Немного понимания первоначальной конструкции даст эта модель двигателя Ленуара.

Так как Ленуар и Отто не были знакомы с электротехникой, то воспламенение в их прототипах создавалось открытым пламенем, которое через трубку зажигало смесь внутри цилиндра. Главное отличие двигателя Отто от двигателя Ленуара было в размещении цилиндра вертикально, что натолкнуло Отто на использование энергии отработанных газов для поднятия поршня после рабочего хода. Рабочий ход поршня вниз начинался под действием атмосферного давления. И после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Именно полнота использования энергии позволила поднять КПД до умопомрачительных на то время 15%, что превышало эффективность даже паровых машин. Кроме того, такая конструкция позволила использовать в пять раз меньше топлива, что потом привело к тотальному доминированию подобной конструкции на рынке.

Но главная заслуга Отто – изобретение четырехтактного процесса работы ДВС. Это изобретение было сделано в 1877 году и тогда же было запатентовано. Но французские промышленники покопались в своих архивах и нашли, что идею четырехтактной работы за несколько лет до патента Отто описал француз Бо де Рош. Это позволило снизить патентные выплаты и заняться разработкой собственных моторов. Но благодаря опыту, двигатели Отто были на голову лучше конкурентов. И к 1897 году их было сделано 42 тысячи штук.

Но что, собственно говоря, такое цикл Отто? Это знакомые нам со школьной скамьи четыре такта ДВС – впуск, сжатие, рабочий ход и выпуск. Все эти процессы занимают равное количество времени, а тепловые характеристики мотора показаны на следующем графике:

Где 1-2 – это сжатие, 2-3 – рабочий ход, 3-4 – выпуск, 4-1 – впуск. КПД такого двигателя зависит от степени сжатия и показателя адиабаты:

, где n – степень сжатия, k – показатель адиабаты, или отношение теплоемкости газа при постоянном давлении к теплоемкости газа при постоянном объеме.

Другими словами – это количество энергии, которую нужно потратить, чтобы вернуть газ внутри цилиндра к прежнему состоянию.

Miller Cycle Engine на автомобиле Mazda Xedos (2.3 L)

Особенный механизм газораспределения с перекрытием клапанов обеспечивает повышение степени сжатия (СЗ), если в стандартном варианте, допустим, она равна 11, то в моторе с коротким сжатием этот показатель при всех других одинаковых условиях увеличивается до 14. На 6-цилиндровом ДВС 2.3 L Mazda Xedos (семейство Skyactiv) теоретически это выглядит так: впускной клапан (ВК) открывается, когда поршень расположен в верхней мертвой точке (сокращенно – ВМТ), закрывается не в нижней точке (НМТ), а позднее, остается открытым 70º. При этом часть топливно-воздушной смеси выталкивается назад во впускной коллектор, сжатие начинается после закрытия ВК. По возвращению поршня в ВМТ:

  • объем в цилиндре уменьшается;
  • давление возрастает;
  • воспламенение от свечи происходит в какой-то определенный момент, оно зависит от нагрузки и количество оборотов (работает система опережения зажигания).

Затем поршень идет вниз, происходит расширение, при этом теплоотдача на стенки цилиндров получается не такой высокой, как в схеме Otto из-за короткого сжатия. Когда поршень доходит до НМТ, идет выпуск газов, затем все действия повторяются заново.

Специальная конфигурация впускного коллектора (шире и короче, чем обычно) и угол открытия ВК 70 градусов при СЗ 14:1 дает возможность установить опережение зажигания 8º на холостых оборотах без какой-либо ощутимой детонации. Также эта схема обеспечивают больший процент полезной механической работы, или, другими словами, позволяет поднять КПД. Получается, что работа, вычисляемая по формуле A=P dV (P – давление, dV – изменение объема), направлена не на нагревание стенок цилиндров, головки блока, а идет на совершение рабочего хода. Схематически весь процесс можно посмотреть на рисунке, где начало цикла (НМТ) обозначено цифрой 1, процесс сжатия – до точки 2 (ВМТ), от 2 до 3 – подвод теплоты при неподвижном поршне. Когда поршень идет от точки 3 к 4, происходит расширение. Выполненная работа обозначена заштрихованной областью At.

Также всю схему можно посмотреть в координатах T S, где T означает температуру, а S – энтропию, которая растет с подводом теплоты к веществу, и при нашем анализе это величина условная. Обозначения Qp и Q0 – количество подводимой и отводимой теплоты.

Недостаток серии Skyactiv – по сравнению с классическими Otto у этих движков меньше удельная (фактическая) мощность, на моторе 2.3 L при шести цилиндрах она составляет всего лишь 211 лошадиных сил, и то при учете турбонаддува и 5300 об/ мин. Зато у моторов есть и ощутимые плюсы:

  • высокая степень сжатия;
  • возможность установить раннее зажигание, при этом не получить детонации;
  • обеспечение быстрого разгона с места;
  • большой коэффициент полезного действия.

И еще одно немаловажное преимущество двигателя Miller Cycle от производителя Mazda – экономичный расход топлива, особенно при малых нагрузках и на холостом ходу

Цикл Миллера

  • Эдвардса
  • Аткинсона
  • Брайтона/Джоуля
  • Гирна
  • Дизеля
  • Калины
  • Карно
  • Ленуара
  • Миллера
  • Отто
  • Ренкина
  • Стирлинга
  • Тринклера
  • Хамфри
  • Эрикссона

Цикл Миллера был предложен в 1947 году американским инженером Ральфом Миллером как способ совмещения достоинств двигателя Аткинсона с более простым поршневым механизмом двигателя Отто. Вместо того, чтобы сделать такт сжатия механически более коротким, чем такт рабочего хода (как в классическом двигателе Аткинсона, где поршень движется вверх быстрее, чем вниз), Миллер придумал сократить такт сжатия за счет такта впуска, сохраняя движение поршня вверх и вниз одинаковым по скорости (как в классическом двигателе Отто).

Для этого Миллер предложил два разных подхода: либо закрывать впускной клапан существенно раньше окончания такта впуска (или открывать позже начала этого такта), либо закрывать его существенно позже окончания этого такта. Первый подход у двигателистов носит условное название «укороченного впуска», а второй — «укороченного сжатия». В конечном счете оба этих подхода дают одно и то же: снижение фактической степени сжатия рабочей смеси относительно геометрической, при сохранении неизменной степени расширения (то есть такт рабочего хода остается таким же, как в двигателе Отто, а такт сжатия как бы сокращается — как у Аткинсона, только сокращается не по времени, а по степени сжатия смеси).

Таким образом смесь в двигателе Миллера сжимается меньше, чем должна была бы сжиматься в двигателе Отто такой же механической геометрии. Это позволяет увеличить геометрическую степень сжатия (и, соответственно, степень расширения!) выше пределов, обуславливаемых детонационными свойствами топлива — приведя фактическое сжатие к допустимым значениям за счет вышеописанного «укорочения цикла сжатия». Другими словами, при той же фактической степени сжатия (ограниченной детонационной стойкостью моторного топлива) мотор Миллера имеет значительно большую степень расширения, чем мотор Отто. Это дает возможность более полно использовать энергию расширяющихся в цилиндре газов, что, собственно, и повышает тепловую эффективность мотора, обеспечивает высокую экономичность двигателя и так далее.

Выгода от повышения тепловой эффективности цикла Миллера относительно цикла Отто сопровождается потерей пиковой выходной мощности для данного размера (и массы) двигателя из-за ухудшения наполнения цилиндра. Так как для получения такой же выходной мощности потребовался бы двигатель Миллера большего размера, чем двигатель Отто, выигрыш от повышения тепловой эффективности цикла будет частично потрачен на увеличившиеся вместе с размерами двигателя механические потери (трение, вибрации и т. д.).

Компьютерное управление клапанами позволяет менять степень наполнения цилиндра в процессе работы. Это даёт возможность выжать из мотора максимальную мощность, при ухудшении экономических показателей, или добиться лучшей экономичности при уменьшении мощности.

Аналогичную задачу решает пятитактный двигатель, у которого дополнительное расширение производится в отдельном цилиндре.

Использование

Этот тип двигателя впервые был использован на судах и стационарных энергогенерирующих установках, а в дальнейшем он также начал устанавливаться на некоторых дизель-электрических локомотивах, например, класса «GE PowerHaul». Цикл Миллера применялся компанией Mazda в двигателях серии K под маркой KJ-ZEM V6 на модели автомобиля бизнес-класса «Mazda Xedos 9» также, известной под названиями «Mazda Millenia» (США) и «Eunos 800» (Австралия). Позже, компания Subaru использовала двигатель, работавший по этим циклам (flat-4), в концептуальных автомобилях с гибридным приводом ( «Turbo Parallel Hybrid»), известных как «Subaru B5-TPH».

Miller Cycle Engine на автомобиле Mazda Xedos (2.3 L)

Особенный механизм газораспределения с перекрытием клапанов обеспечивает повышение степени сжатия (СЗ), если в стандартном варианте, допустим, она равна 11, то в моторе с коротким сжатием этот показатель при всех других одинаковых условиях увеличивается до 14. На 6-цилиндровом ДВС 2.3 L Mazda Xedos (семейство Skyactiv) теоретически это выглядит так: впускной клапан (ВК) открывается, когда поршень расположен в верхней мертвой точке (сокращенно – ВМТ), закрывается не в нижней точке (НМТ), а позднее, остается открытым 70º. При этом часть топливно-воздушной смеси выталкивается назад во впускной коллектор, сжатие начинается после закрытия ВК. По возвращению поршня в ВМТ:

  • объем в цилиндре уменьшается;
  • давление возрастает;
  • воспламенение от свечи происходит в какой-то определенный момент, оно зависит от нагрузки и количество оборотов (работает система опережения зажигания).

Затем поршень идет вниз, происходит расширение, при этом теплоотдача на стенки цилиндров получается не такой высокой, как в схеме Otto из-за короткого сжатия. Когда поршень доходит до НМТ, идет выпуск газов, затем все действия повторяются заново.

Специальная конфигурация впускного коллектора (шире и короче, чем обычно) и угол открытия ВК 70 градусов при СЗ 14:1 дает возможность установить опережение зажигания 8º на холостых оборотах без какой-либо ощутимой детонации. Также эта схема обеспечивают больший процент полезной механической работы, или, другими словами, позволяет поднять КПД. Получается, что работа, вычисляемая по формуле A=P dV (P – давление, dV – изменение объема), направлена не на нагревание стенок цилиндров, головки блока, а идет на совершение рабочего хода. Схематически весь процесс можно посмотреть на рисунке, где начало цикла (НМТ) обозначено цифрой 1, процесс сжатия – до точки 2 (ВМТ), от 2 до 3 – подвод теплоты при неподвижном поршне. Когда поршень идет от точки 3 к 4, происходит расширение. Выполненная работа обозначена заштрихованной областью At.

Также всю схему можно посмотреть в координатах T S, где T означает температуру, а S – энтропию, которая растет с подводом теплоты к веществу, и при нашем анализе это величина условная. Обозначения Q p и Q 0 – количество подводимой и отводимой теплоты.

Недостаток серии Skyactiv – по сравнению с классическими Otto у этих движков меньше удельная (фактическая) мощность, на моторе 2.3 L при шести цилиндрах она составляет всего лишь 211 лошадиных сил, и то при учете турбонаддува и 5300 об/ мин. Зато у моторов есть и ощутимые плюсы:

  • высокая степень сжатия;
  • возможность установить раннее зажигание, при этом не получить детонации;
  • обеспечение быстрого разгона с места;
  • большой коэффициент полезного действия.

И еще одно немаловажное преимущество двигателя Miller Cycle от производителя Mazda – экономичный расход топлива, особенно при малых нагрузках и на холостом ходу

Немного истории. Грустной…

Современные двигатели конструктивно практически мало изменились со времен «отцов-осно-вателей»: Николауса Августа Отто и Рудольфа Кристиана Карла Дизеля. Сегодня в ходу те же коленчатый вал, шатуны, поршни, цилиндры, клапаны, распределительный механизм.

Поэтому все новшества в двигателестроении опираются на новые материалы и технологии, в том числе связанные с электронным управлением.

Например, если еще 20 лет назад блок цилиндров почти повсеместно был сделан из чугуна, то сегодня чугунный блок встречается редко, плавно перейдя в разряд анахронизмов. В настоящее время блоки делают из алюминия, который и легче, и технологичнее. Сначала были проблемы с прочностью и жесткостью, но их постепенно решили.

Правда, полностью алюминиевые моторы действительно приживаются трудно – очень они чувствительны к смазке, охлаждению, зазорам. А вот алюминиевый блок с чугунными гильзами гораздо менее требователен в эксплуатации. Так что старый добрый чугун, который использовали Отто и Дизель, еще послужит…

Вообще надо отметить, что создание нового двигателя даже традиционной схемы – это процесс очень долгий. Вот и получается, что модельный ряд автомобилей меняется в среднем через четыре-пять лет, а мотор в нем нередко стоит от предыдущих моделей, а то и еще более ранних. И часто даже в новых двигателях используются узлы от старых – например, блок цилиндров. Так что двигатели «живут» долго – бензиновые в среднем 10-15 лет, а дизели легко «доживают» до 20 и даже 30 лет.

И еще. С сожалением приходится признать, что в России практически не было своих разработок двигателей – все бралось «оттуда», из-за границы. Причем часто даже то, что там отвергалось. Результат очевиден – сегодня передового двигателестроения у нас в стране просто не существует. Как и конструкторов для его возрождения.

Все началось с авиации… Авиадвигатель Rolls-Royce Merlin 40-х годов прошлого века с непосредственным впрыском

Теория «драйвов»

Автор метода «драйвов» – Карл Халл. Все перемены внутри человека приводят к какому-либо реагированию, смене деятельности. Таким образом, личность старается ликвидировать всякие изменения. Составные части такой ликвидации – «драйвы» (т.е. «влечения»). Подкрепляют данное поведение повторяющиеся попытки, которые усиливают реакцию, поскольку подтверждённое чем-то поведение надёжно фиксируется в сознании человека.

В экономически развитых странах активность работника подкрепляется вознаграждением. Но с этим нужно быть осторожнее: такой человек может больше ничего не выполнять, если нет нового подтверждения (поощрения).

Внешние ссылки

  • (ru) (просмотрено 4 сентября 2017 г. ) Веб-страница с подробностями и сравнениями с двигателями Ванкеля и обычными двигателями.

Термодинамические циклы

Внешнее сгорание
Без изменения фазы Брайтон  · Карно  · Эрикссон (и мотор )  · Стирлинг  · Адиабатический (или псевдо-Стирлингский) Стирлинг  · Стоддард  · Стирлинг-Вийюмье
С изменением фазы Калина  · Ренкин (и его органический цикл )  · Регенеративный цикл  · Гигроскопический цикл  · Стирлинга двухфазный
Внутреннее сгорание Аткинсон  · Брайтон  · Дизель  · HCCI  · Ленуар  · Миллер  · двухтактный цикл  · Beau de Rochas
Смешанные циклы Комбинированный цикл  · Высокоэффективный гибридный цикл  · Двойной  цикл · Цикл Sabathé
Другие циклы Клод  · Двойное давление Клода  · Фикетт-Якобс  · Гиффорд-МакМэхон  · Хирн  · Хамфри  · Сименс  · Хэмпсон-Линде  · Двойное давление Линде  · Хейландт  · Клименко  · термогравитационный цикл
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Велодром
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: